記憶術学基礎論(両極性の発見)

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

大体この世のものは両方あることが多いです。
割合はともかく一方があったら、その対極というのが存在していることが多いのです。
例えばボブも記憶術の情報の増加の側面に最初目を奪られましたが、色々試しているうちにどうも反対の情報の減少の側面もあることを発見しました。
情報の増加の側面とは、りんごという言葉にイメージのリンゴを加えることで、情報が増加しているという側面のことで、情報の減少というのは、り、ん、ごという三つの情報をリンゴという一つのイメージに直しているという側面のことです。

さらに他の例で言えば、情報の類似性が高いとどうも働きがいいということもわかったのですが、反対の情報の相違性、つまり多様性が高くないとそれも働かないということもわかりました。
情報の類似性とは、既知の情報と類似していることを使って記憶術を働かせているということで、情報の多様性というのは、その既知の情報が多様でないと働きが悪くなるということです。
類似性はわかると思いますが、多様性というのは、その類似させている情報が多様でないと干渉が起き、記憶術として成り立たないということです。

このように一方が必要だとわかったら、反対のもう一方も必要であることが多いので、両極性に注意すると一つの発見から自動的にもう一つを発見できることがあります。

情報を入力し続けることによる忘却(アガナエ!)

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

人間は情報を見たり、聞いたりすることにより、大半を忘れるという。
そこで今回はその忘却に少しでもアガナエる方法を提示しようと思います。

まあ、普通超自伝的記憶の人達も本読んでも、自分に関わりないことだとドンドン忘れるらしいです。
では、反対に聞くけど、本なのに自分に関わることだとなぜ忘れないのか?
その仮説は
①感情が動くから
②自己が関わっている様子を描けるから
③想起のスケジュールに組み込めるから

ではないかと仮説ってます。
①はいいとして、②はたぶん彼らがやっている想起法というのが、自己を軸にして想起する方法だからだと思われます。
③はそうして②でイメージした情報を何らかのスケジュール化して思い出す方法を持っているのではないか、と一番謎で現在わからないところです。

さて話は戻りますが、そうそうアガナエる方法ですね。
今回は本の内容に限定しますが、出来事を少し情報を覚える度に挟むとアガナエるのではないか、と思っています。
つまり仮説です。
例えば1ページ読んだら、外に目をやって今の自分の変化を軸に印象に残ることを探す。
そしてその後、変化を見つけたらすぐさま1ページの記憶術的イメージと結びつける。
そう外界の情報を意識的にイメージと結びつけまくるのです。

まだ仮説なので本採用になっていませんが、できればこの自分を含めた外界と本の内容を結び付ける規則性などを研究したいですね。

マス目の場の構造

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

マス目の場とは、縦3×横3のマス目を使った場のことです。
つまり行列マスのことです。

このマス目を場として色々使おうと画策して来ましたが、みなさんなぜボブが3×3マスばかりで、その実現をしようとしていたかお分かりでしょうか?
それは人間の認知能力で無理なくイメージできるのが、3×3マスだからです。
この無理なくというのは、ボブ調べですが、これ以上、例えば5×5マスになると少し無理が生じます。

しかしそれを打破する方法が今回ボブのテーマです。

マス目の場の“構造”となっているように、マス目自体に構造を持たせることでボブは解決を図ることにしました。
構造の一つが“高さ”です。
例えば5×5マスでも
⑤④③②①
④④③②①
③③③②①
②②②②①
①①①①①

という配置にします。
①~⑤は高さを表します。
①が一番低く。
⑤が一番高いです。

このようにすると高さによって位置に特徴が付き、そこに置いたイメージの位置が分かりやすくなります。

構造と言っている限りはこのように高さだけが、構造ではないので、ガンガン発想を柔軟にして、色々試してみるといいと思います。
この方法を使えば、中間プットの理想形であるノートのような記憶術につながるかもしれません。

記憶術学基礎論(観察と内観の違い)

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

普通に目で見て観察する場合と心的現象を内観する場合とでは何が違うのか?というテーマです。

普通に目で見て観察する場合は、実は対比して見ているのではないでしょうか。
つまり心の中にある観察対象のありようと、今自分が目の前で見ている対象を対比することで、その違いを浮き彫りにしているのでしょう。
例えば、本のない本棚を観察する場合、“普通”ならばここには本が入っているということが観察できるのは、心的にその本棚に何かしらの本が入っている場合をイメージし、それと目の前の本棚を対比しているからだと思われます。
この視覚的な仮説をボブは“視覚的仮説”と名付けています。

もちろん知覚心理学で言われている形の同定から意味の同定という形も存在していると思われます。

これに対して内観の場合、“言語的仮説”が力を発揮するのではないでしょうか。
つまり内観した場合は、それ自体が心的な情報であるため、別の心的な情報と対比させるためには、言語の力によって状況を設定する必要性があるのではないでしょうか。
ここで一番有力な言語は“普通”ならばです。
例えば「心的にイメージした情報が消える」という現象を観て、ボブならば「普通ならば消えないはずだ!」という仮説を作ります。
そしてそれを「なぜ消えるのか?」という疑問に変えて、思考してみています。

このように普通という言葉は、無数の意味を持っています。
人によってその設定の仕方が違います。
なので、かなり曖昧な言葉なのですが、結構天啓を与えてくれます。

ミクロとマクロな関連付け&関連付けの理想

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

ミクロとマクロな関連付けが存在していることに気づきました。

ミクロとは例えば「い」の斜め線一本に対して関連付ける場合です。
つまり小さい特徴を見つけ出して、関連付ける場合です。

もう一つのマクロな関連付けというのは、例えば「い」の全体を使って関連付ける場合です。
全体を一つの特徴として見做して関連付けるということです。

では微細な特徴に関連付ける場合と全体を特徴と考えて関連付ける場合のどちらがいいのか?というと、「他の特徴と被っていないならどうでもいい」とボブは考えます。
ようするに、特徴を細かくみていった場合に、その特徴がすでに関連付けとして使った特徴と似ている場合、それは干渉の元になるのでやめなしょう、ということです。

そしてそれとは別なのですが、関連付けの最終的理想は、情報の取捨選択を自在にできるようにすることだと最近思いました。
例えば、全く別々のページに実は一つの表にまとめられるような情報がバラバラに載っていた場合に、その情報を自在に拾い上げて、その表を作るようなことができたらいいなーと思っている次第です。

情報数保存則と対文章式の実現

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

圧縮目指した者からの一つのお話。

対文章式記憶術でパーツを組み合わせて、何かに見立てる。
そしてそれに名前を付けて、またパーツに還元する。
たぶん使っている人は、当たり前のように使っていると思います。

でもこの圧縮が成立するのは、当たり前ではないのです。
実は圧縮って本当は情報数を減らさないと成り立ちません。
全情報を持ったまま、複数の情報を少ない情報に直すことなどできないのです。
もし仮にできてしまうと、最強の記憶術ができることになりますが、今のところ無理なのです。

では、対文章式記憶術では何の情報を捨てていると思いますか?
それは「順序」です。
順序を捨てているため、対文章式記憶術は見かけ上、圧縮が成立しているのです。

そのためトランプ記憶とか、数字の羅列暗記なんかには向きません。
これらは全て順序を伴なった記憶だからです。
って言っても、全くの無力というわけでもありません。
工夫すれば何とかはなります。

例えば工夫として、パーツの順序ごとに赤、紫、青、緑、黄、茶の順序でパーツに色付けするなんて方法もとれます。
でもこれじゃあ、6個の順序しかできないなーと思われた方もいるはず。
もし仮に茶まで行ってしまったら、また赤に戻ればいいのです。
6順序違えば、同じ色があったとしても感覚的にわかると思います。

と、こんな方法があるというだけで、これはボブ的にはスマートじゃないと思っているので、今のところ本採用していません。

自伝的記憶について

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

Twitter上でもつぶやきましたが、HSAMの人は自己の介在していない記憶に関しては忘れる傾向にあるらしいです。
でも考えてもみてください。
自己の介在していない記憶なんて存在しているのかな?
答えはNO!です。

確かに世の中には意味記憶や本の自分の存在しないストーリーなどなどは存在しますが、全て「自分」という五感を通して処理しているはずです。
なのに、自伝的記憶じゃないから忘れるー。
あり得ないですね!

つまり彼らの言っている自伝的記憶ではないものというのは、少なくとも「自己の介在いない記憶」ではないということです。

彼らに存在していると思われるのは、相互反応性と言えるものだと思います。
相互反応性とは、自分の反応と周囲の何かの反応が相互に起きることです。
彼らはきっと自己を記銘、想起の起点としているのだと思います。

つまり普通の人は、「外で見た景色を記銘し、想起しよう」とします。
けれど、HSAMの人は「自己の内面や身体的感覚などを記銘し、そして外のことと結びつけて記銘しようとしているのでしょう。それは想起のときも、まず自己のそのときの内面や身体的感覚を想起し、そして外のことを想起しようとしている」のだと仮説ってます。

つまり普通の人が外の情報を起点としているのに、彼らは“自己”を起点として記銘、想起しているのだと思います。

こう考えると彼らはメタ認知を駆使して、自己の内面の微妙な変化をすくい続けているのだろうと思います。。。

デカルト式場所法と自伝性

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

デカルト式場所法を研究していて思ったことがあります。
昔自己介在性という言葉を使って片づけたことです。
しかし再度再考したいと思います。

どういうことか?
場所を要素に分け続けましょう。
例えば自分の自室を3×3マスに分けましょう。
このとき、場所としての働きは?
部屋の大きさにもよりますが、ボブの部屋では働いています。

じゃあ、もっと細かく自室を9×9マスに分けましょう。
このとき、場所としての働きは?
ボブの部屋ではわずかにある。
このとき注意してほしいのは、何もない空間に1マスだけ分けた場所を置いたときをイメージしてください。

ここで場所の性質は一つわかりますね。
つまりマス目が狭くなっても、ある程度なら「他のマス目と連続して繋がっている場合」は、場所としての働きを損なわない。
反対にマス目が他のマス目と繋がっていない場合、場合によってはすぐに場所の効力を失うということです。

じゃあ同じことを東京ドームでやってみましょう!
すると9×9マスでも全然へっちゃらでした。

この結果は自伝的記憶の一つの性質を表しているのだと思います。
場所に限定した自伝的記憶とは何か?
これをはっきりさせたいです!

デカルト式場所法

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

デカルトと言えば、ボブの知る限り要素を観ることによって全体を作り出そうという哲学の基礎付けになった人です。
では、場所も要素に還元することで、何か特異な性質を有するのか?ということを知りたいというのが今回のテーマ。

(全然シリーズ化していないのは、それだけ体系だった研究は面倒くさいということです)

まずモノが一切ない部屋で考えようと思います。
ただの四角い部屋なのですが、ここに何か他の現象を投入しましょう。
ボブが不思議に思うことがあります。
HSAM、つまり超自伝的記憶を持つ人達はなぜ繰り返す日常の中で登場する同じ部屋や同じ場所で起きた出来事を、干渉せずに保持していられるのか?というのが不思議でたまりません。
この現象はモノが一切ない部屋では顕著に表れると思います。

もし仮にその方法が出来れば、同じ部屋や場所の使い回しができることになり、有用な方法だと思います。
つまり「場所のリサイクル問題」として考えることができると思います。

さて、それがデカルト式の場所法と何が関係あるのか?
変化を要素に還元することで違う場所の判定は受けられないのか?というのが狙いです。
部屋であれば、汚れた部屋ではなく、“キレイ”な四角い空間の中に“汚れ”があとから付着していると考えたり、何もない空間にモノが“付随”していると考えたりすることで、常にその付加物を変えることで違う場所としての判定を受けれないのか?ということです。

つまり付随するイメージをいくつか拾い上げて、そのイメージを大袈裟にすることで別の場所として判定をさせるということです。

記憶術学基礎論(単品思考と対比思考)

当ブログは当サイトのトップページの規則に基づく損害賠償請求対象情報です。
当サイトのトップページをご覧になっていない方は、当サイトのトップページの規則をご覧の上、当サイトのトップページの規則を遵守し、当ブログをご覧になってくださるようお願いいたします。
トップページの規則を破りますと、損害賠償請求することになりますので、どうぞよろしくお願いいたします。

ある情報単品からその特性を取り出す方法としてボブがしていることは、たぶん「状況を設定」するということだろう。
例えば記憶という言葉からその新たなる特性を導き出そうとする場合、ボブがしたのは、その情報の数の操作だった。
数が少ないとき、明らかに記憶は異なる働きをみせた。
つまり数が多い状況と少ない状況を作り出し、それを対比したということだろう。

さらに情報が2つ以上あるときは、あるいは見つける、作れるときは基本的にボブは「二項対立」や「対比」と言ったことをしている、、、と思う。
例えば対文章式記憶術が生まれるまでを考えると、まずボブがやったことをメリットとデメリットという二項対立でものを考え始めた。
普通の記憶術にはメリットはこうで、デメリットはこうで、と考えた。
結果その中の文章を覚えにくいというところが、ボブの価値観上重要だと判断した。

そして記憶術とはじめのころ二項対立していたのは、理解する方法、つまり理解術だった。
だからこのブログ内でも理解のことに触れたブログがある。

最後に強力なのが「対比」だろう。
例えば普通の記憶術と対文章式記憶術の対比をしてみてもいいだろう。
この場合、普通の記憶術の強みをボブの場合見てしまう。
それはイメージが何も組み合わせないイメージであるがゆえに、想起しやすいのではないか、という強みだ。
ボブはこれを何度も超えたいと思っているが全然できていない。
このように普通の記憶術の上位互換として対文章式記憶術の開発をしているが、普通の記憶術の方が優れた点は、今でも散見される。